Inverse Multislice Ptychography by Layer-wise Optimisation and Sparse Matrix Decomposition

Abstract

We propose algorithms based on an optimisation method for inverse multislice ptychography in, e.g. electron microscopy. The multislice method is widely used to model the interaction between relativistic electrons and thick specimens. Since only the intensity of diffraction patterns can be recorded, the challenge in applying inverse multislice ptychography is to uniquely reconstruct the electrostatic potential in each slice up to some ambiguities. In this conceptual study, we show that a unique separation of atomic layers for simulated data is possible when considering a low acceleration voltage. We also introduce an adaptation for estimating the illuminating probe. For the sake of practical application, we finally present slice reconstructions using experimental 4D scanning transmission electron microscopy (STEM) data.

Publication
IEEE Transactions on Computational Imaging, vol. 8, pp. 996-1011, 2022